NJDEP Stakeholder Meeting Stormwater Infiltration

Clay Emerson PhD PE CFM Princeton Hydro

Soil Testing

Soil Testing – reliance on a limited number of soil test pits and/or improper implementation of testing protocols may not provide accurate soil permeability information

- 1. An adequate number of tests should be conducted to cover the expected variability of hydraulic conductivity within the footprint of the proposed basin.
- 2. Testing should be conducted in the horizon with the lowest expected hydraulic conductivity below the proposed bottom of the infiltration basin.
- 3. Testing methods which specifically calculate a hydraulic conductivity should be used.

Soil Testing

Examples for discussion:

- 1. Hydraulic Conductivity
- In-Field / UndisturbedSamples
- 3. Physically Based Interpretation of Data
- Use a Standardized / Consistent Method

Soil Testing

Examples for discussion:

Method*	Depth (ft)	Result (in/hr)	Notes
HPT	(6.5 to 23.5)	0 to 170	~50 in/hr near other test depths
Pump Test	~20-25	1.5	Horizontal hydraulic conductivity, b=10ft
Slug Test	~20-25	7.3, 8.2	Two tests, same well
Cased Borehole	4	1.2	2" Diameter, <1 gallon used, presoak and four trials
Single-Ring Infiltrometer	1	1.1	Four trials very consistent response

pH

Construction Methods

Construction Methods - soil compaction during construction may decrease soil permeability and infiltration rates

- 1. Proper construction practices are key.
- 2. No rubber tire equipment on finished surface.
- 3. "Under excavate" basins during construction period.
- 4. Diligent E&S measures.
- 5. Give the soil a kick start with organic matter and low bulk density.

Maintenance – improper maintenance that decreases soil permeability, such as insufficient removal of accumulated sediment and overgrown vegetation may decrease actual infiltration rates.

- I have not found a system which has failed due to improper longterm maintenance; most failures in my experience are designbased.
- 2. Overloaded underground systems (unmaintainable) with inadequate pretreatment are susceptible to failure.
- 3. Vegetation is expected to **maintain** the operation of an infiltration system due to well-documented physical and biological processes.

- Constructed in 2001.
- Over 15 years of continuous operation.
- Intensely monitored.
- Maintaining functionality with no maintenance to date.

Emerson, C.H., Traver, R.G., "Multi-Year and Seasonal Variation of Infiltration from Stormwater Best Management Practices" ASCE Journal of Irrigation and Drainage Engineering, Vol. 134, No. 5, pgs. 598-605 September/October 2008.

"K5" soil specification is not adequate; especially when basin lacks vegetation.

"K5" soil specification is not adequate; especially when basin lacks vegetation.

Data from an overloaded subsurface infiltration bed (130:1).

Emerson, C.H., Wadzuk, B.M., Traver, R.G., Hydraulic Evolution and Total Suspended Solids Capture of an Infiltration Trench" Hydrological Processes (Wiley InterScience), Vol. 23, January 26, 2010, DOI: 10.1002/hyp.7539.

